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Abstract The interaction between Trp-Arg dipetide (WR)
and calf thymus DNA (ctDNA) in pH 7.4 Tris-HCl buffer
was investigated by multi-spectroscopic techniques and
molecular modeling. The fluorescence spectroscopy and UV
absorption spectroscopy indicated that WR interacted with
ctDNA in a minor groove binding mode and the binding
constant was 4.1×103. The ionic strength effect and single-
stranded DNA (ssDNA) quenching effect further verified the
minor groove binding mode. Circular dichroism spectroscopy
(CD) was employed to measure the conformation change of
ctDNA in the presence of WR. The molecular modeling
results illustrated that electrostatic interaction and groove
binding coexisted between them and the hydrogen bond and
Van derWaals were main acting forces. All the above methods
can be widely used to investigate the interaction of peptide
with nucleic acids, which contributes to design the structure of
new and efficient drugs.
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Introduction

The interactions of peptides or small molecules with
Deoxyribonucleic acid (DNA) have been the focus of some

recent research works in the scope of life science [1]. For the
agents which bind to DNA, intercalation, groove binding and
electrostatic binding are the three primary bindingmodes [2–4].
The results of various interactive modes studies have been used
in designing new and efficient clinic drug molecules [4, 5].

In recent studies, many peptides have found wide applica-
tion in therapeutics, in particular, anticancer agents for their
biological activity [6, 7]. Arg-containing peptides play an
essential roles in a number of biological processes in human
body because of its positive charge, thus it is fundamental
importance for understanding the character and reactivity of
the complex formation of Arg-containing peptides, the
properties of the side chain guanidinium [8–10].

In the present study, the interaction mode between the
ctDNA and WR, which contains the simple structure of
Arg-containing peptide, simultaneously, applying Trp as a
fluorescence probe [11, 12], has been investigated by the
application of multiple spectroscopic techniques and molec-
ular modeling. This work can benefit further understanding
of the binding mechanism of WR with DNA and compre-
hension Arg-containing peptides’ pharmacological effects
as well as the design on the structure of new and efficient
drug molecules.

Materials and Methods

Reagents

We prepared a stock solution of WR (1×10−3 mol L-1) by
dissolving 0.019 g ofWR (a purity of at least 95%) purchased
from GL Biochem Inc. (Shanghai, China) in 50 mL of water.
This solution was further diluted as required

Calf thymus DNA (Beijing Biodee Biotechnology Co.,
Ltd., China) was prepared by dissolving appropriate solid
DNA in 50 mL calibrated flask. This solution was preserved
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at 0–4 °C and shaken gently as needed. The nucleotide con-
centration was 7.2×10−4 molL−1, determined by the absor-
bance at 260 nm (ε260=6600 L mol−1 cm−1) [13].

A 0.1 mol/L Tris–HCl buffer (pH=7.4) was used to
control pH. When preparing the reaction systems in 10 ml
standard flasks, 1.0 ml of Tris-HCl was added. The concen-
tration of NaCl stock solution was 1 mol L−1, by dissolving
5.844 g of NaCl (Tianjin Damao Chemical Reagent Factory)
into100 mL of water.

All the chemicals used were of analytical-reagent grade.
All solutions were prepared using ultrapure water (resistivity
of 18.25 MΩ cm).

Apparatus

UV–Vis absorption spectra in aqueous solution by using a
quartz cell having 1.0 cm pathway were all recorded on a
double beam Shimadzu UV-2450 spectrophotometer.

All fluorescence spectra were measured on F-4600 fluores-
cence spectrophotometer (Hitachi Japan) with 1.0 cm path
length fluorescence cuvette. The excitation and emission slit
widths were set at 10 nm and the scan rate at1200 nm min−1.
PMT voltage was fixed at 600 V.

The CD spectra were made on a J-810 Spectropolarimeter
(Jasco, Tokyo, Japan) in a 1.0 mm path length quartz cuvette.

pH measurements was measured with a pHs-3C acidity
meter (Peng shun, Shanghai, China).

Molecular Docking Studies

All docking studies were carried out with AutoDock 4.2. The
crystal structure of DNA duplex was 5′-d (CGCGAA
TTCGCG)2-3′, which was obtained from NIH genetic
sequence database(MMDB ID: 48220). The structure of WR
(Scheme 1) encoded in Gaussian 03W input files and further
refined by performing density functional theory (DFT)
optimizations.

All the water molecules were removed, whereas Gasteiger
charges and essential hydrogen atoms were added with the aid
of AutoDock tools. The grid size was set to 60, 80 and110 along
the X-, Y- and Z-axes, respectively. Furthermore, the ligand root
of WR was detected and the rotatable bonds were defined.

The docking procedure was run and the binding site as
well as the possible conformation of the complex generated
from the reaction between DNA and WR was calculated.

Results and Discussion

UVAbsorption Spectroscopy

UV Absorption Spectra of WR in the Presence of ctDNA

The binding of drugs to DNA has been characterized
classically through hypochromism and hyperchromism in
the absorption spectra [14–16]. When a drug molecule is
intercalated between base pairs of nucleicacids, a red shift
and hypochromism are observed of small molecules at the
absorption maximum [17, 18].

Figure 1 shows that WR has absorption peaks at 220 and
280 nm. On addition of ctDNA a hypochromicity was
observed without any band shift at both 220 nm and
280 nm. This result indicates that the binding mode is not
the intercalative binding [19].

Considering that the binding of DNA has no significant
effect on the UV absorption spectra of WR, which indicates
that the binding mode of WR to DNA might be groove
binding [20].

Moreover, the peak at 222 nm is assigned to the skeleton
of WR, whereas the peak at 280 nm may be originated from

Scheme 1 The structure of WR

220 240 260 280 300
0.0

0.2

0.4

0.6

0.8

1.0

1.2

250 260 270 280 290 300

0.00

0.05

0.10

0.15

0.20

A
bs

or
ba

nc
e

Wavelength(nm)

Fig. 1 UV-vis absorption spectra of WR in the absence and presence
of ctDNA at different concentrations (pH=7.4, T=298 K). c(WR)=5×
10−5 mol L−1; c(Trp)=1×10−5 mol L−1; c(DNA)/(×10−5 mol L−1) a–e:
0, 2.16, 6.48, 8.64 and 10.8, respectively
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the aromatic chromophore of WR. The latter shoulder peak
at 288 nm corresponds to zero vibrational level of the
electronic transition frequency [21].

UV Absorption Spectra of ctDNA in the Presence of WR

The application of absorption spectroscopy may give us
useful information in DNA-binding [22]. Therefore, the
effect of WR on the UV absorption spectra of DNA was
also applied in this work. In the absorption spectrum,
hyperchromism derives from damage to the DNA double-
helix structure [23]. It can be seen from the experimental
results shown in Fig. 2 a hypochromicity was observed
without any band shift at 260 nm with the addition of

ctDNA. This showed that the double helix is affected by
the binding between WR and ctDNA.

Measurement of Fluorescence Spectra

Fluorescence Measurements

The effect of DNA concentration on the fluorescence of WR
was studied (Fig. 3). The maximum excitation wavelength is
278 nm and the maximum emission wavelength is 350 nm.
Fluorescence intensity of WR decreases rapidly with the
addition of DNA concentration.

As the structure of WR shows, the guanidine group is
positively charged. Electrostatic binding may neutralize
the negative charged phosphate groups of DNA [23],
inducing distribution changes of electron, which may be
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Fig. 2 UV-vis absorption spectra of ctDNA in the absence and presence
of WR at different concentrations (pH=7.4, T=298 K). c(DNA)=7.2×
10−5 mol L−1; c(WR)/(×10−5 mol L−1) a–e: 0, 1.50, 3.00, 4.50 and 6.00,
respectively
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Fig. 3 Fluorescence spectra of WR in the absence and presence of ct
DNA at different concentrations (pH=7.4, T=298 K). c(WR)=1×
10−6 mol L−1; c(DNA)/(×10−5 mol L−1) (a–g): 0, 0.72, 1.44, 2.16,
2.88, 3.6 and 4.32, respectively
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Fig. 4 a Stern–Volmer plot of the fluorescence quenching of WR with
different concentrations of ctDNA. b Plot of lg((F0-F)/F) versus
lgCDNA with the addition of various a mounts of ctDNA to WR
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the most reasonable explanation for the fluorescence
quenching [24]. Moreover, there is a H-bond formed
between the attached amino-group near indole and DNA.
Thus, the π-π conjugation decreased and the fluorescence
quenching occurred [25].

Fluorescence Quenching Mechanisms

The interaction of small molecule with biological macromole-
cule can cause fluorescence quenching which was classified
into static quenching and dynamic quenching [26]. Therefore,
the fluorescence quenching of WR by DNA should be ana-
lyzed using the modified Stern-Volmer equation (Eq. (1)) [27],

F0 F= ¼ 1þ Kqt0 Q½ � ¼ 1þ Ksv Q½ � ð1Þ

where F0 and F are the fluorescence intensity of WR without
and with DNA, respectively. [Q] is the concentration of the
quencher, τ0 is the lifetime of the fluorophore. Its value is about
10−8 s [28], Kq andKsv are the bimolecular quenching constant
and the Stern–Volmer quenching constant, respectively. The
plots of lg[(F0–F)/F] versus lg[Q] are shown in Fig. 4a. Kq
was calculated from Ksv=Kqτ0. For WR, the value of Kq is
4.1×1011 L mol−1 s−1, which is far greater than 2.0×
1010 L mol−1 s−1 (the maximum diffusion collision quenching
rate constant). Thus, the fluorescence quenching mechanism of
WR by DNA was revealed to be consequence of static
quenching.

The binding constant (K) and the number of binding sites
(n) can be obtained from Eq. (2) [29]

lg F0 � Fð Þ F=½ � ¼ lg KA þ nlg Q½ � ð2Þ
Where F0, F and [Q] are the same as in Eq. (2), the linear

relationship plots of F0/F versus [Q] are shown in Fig. 4b.
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Fig. 5 Fluorescence quenching plots of WR in the presence of ssDNA
and dsDNA at different concentrations, respectively (pH=7.4, T=298 K).
c(WR)=1×10−6 mol L−1
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Fig. 6 Effects of ionic concentration on fluorescence spectra of WR
(pH=7.4, T=298 K). c(DNA)=7.2×10−5 mol L−1; c(WR)=1.0×
10−6 mol L−1
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Fig. 7 CD spectra of DNA in the absence and presence ofWR (pH=7.4,
T=298 K). c(DNA)=7.2×10−5 mol L−1; c(RAC)/(×10−5 mol L−1): 0, 4
and 8, respectively

Fig. 8 Molecular modeling results of the WR and DpNA system. a
Binding site of RAC to DNA. b Detailed illustration of the binding
between WR and DNA
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KA is the binding constant and n is the hill coefficient.
The calculated values of KA is 1.4×104 Lmol−1, which is
lower than that of classical intercalative binding mode
[14]. The groove-binding mode mentioned above can be
verified again.

Effect of Native or Denatured DNA on Fluorescence
Quenching

Further support for the groove binding of WR to DNA was
obtained through the fluorescence quenching effect of
single-stranded DNA (ssDNA) or double-stranded DNA
(dsDNA) on WR. The dsDNA was converted into ssDNA
by incubating the solution at 100 °C for 30 min followed by
cooling in ice-water bath. The double-helix structure split
into two string-like soft polynucleotide chains, which cause
the difference in the fluorescence quenching [30]. In the
absorption measurement, we can exclude the typical inter-
calation binding in the WR-DNA complex. If there was only
an electrostatic mode, the quenching effect on the drug
would not appear a significant change, for the ssDNA can
still offer binding sites of the negatively charged phosphate
groups [30, 31]. As can be seen from Fig. 5 that the
quenching of denatured DNA is much smaller than the
native DNA. Therefore, groove bindings are the major bind-
ing modes for the studied systems, the ssDNAwill have less
opportunity to bind the WR than dsDNA will do.

Effect of Ionic Strength on Fluorescence Quenching

The influence of ionic environment on the fluorescence
quenching was assessed at various NaCl concentrations.
Figure 6 represents the effect of ionic strength on the fluores-
cence quenching of WR caused by DNA. When the concen-
tration of NaCl ranged from 0 to 0.25 mol L−1, the
corresponding fluorescence intensity continuously decreased.
The above results can be explained as follows, DNA is an
anionic polyelectrolyte, and Na+ ions can neutralize the
negatively charged phosphate backbone of DNA by electro-
static interaction [29, 32]. As a consequence, the double helix
of DNA contracts longitudinally, which ultimately makes the
groove of DNA narrower and deeper. This may bemore prone
to interact between WR and DNA. Finally, there are less free
WR molecules in the solution, resulting in the decrease of
fluorescence intensity [33]. These results provide further proof
of the groove binding between WR and ctDNA.

Circular Dichroism Spectroscopy

Circular dichroism (CD) spectroscopy is useful in monitor-
ing changes in DNA morphology during its interactions
with exogenous substances [16, 34]. Therefore, CD can
show if WR binding can alter the ctDNA conformation.

The ctDNA in the B conformation shows two conserva-
tive bands in the CD spectrum; a positive peak due to base
stacking (275 nm) and a negative one owing to the helicity
of DNA (245 nm) [35].

It can be seen from Fig. 7 that the intensities of the negative
band decreased significantly (shifting to zero levels) accom-
panied by a slight red shift, whereas the change of the positive
band is small with increasing [WR]/[DNA] ratio. The lack of
new peak in CD spectra excludes the classic intercalation [36,
37]. Some investigators believed that this type of changes in
the CD spectra may be characteristic of a shift from B-like
DNA structure toward one with some contributions from an
A-like conformation [38].

Such behavior suggests further that the double helix is
destroyed, which is consistent with our experimental results
of UV absorption spectra of ctDNA in the presence of WR;
however, the binding modes do not significantly unwind
DNA base pairs.

Molecular Modeling Studies

Docking method can provide the visual representation of the
phenomenon of the interactions between the macromolecule
and ligand, which can complement and substantiate the
experimental results [39].

Compared with G-C regions, the narrower A-T regions is
much more prone to generate a better fit of small molecules
into the minor groove [33, 40]. Moreover, C-2 carbonyl
oxygen of T or the N-3 nitrogen of A plays an important role
in the formation of hydrogen bonding to the minor groove
binders [41].

Structural analysis of Fig. 8(a) reveals a feature pertaining
to the WR binding within the DNA minor groove. In our
work, only one hydrogen bond between the N-3 nitrogen of
A 18 on chain B (DA18B) and the N atom of the amino group
on WR. In addition, electrostatic force forms between the
phosphate groups on chain B (DT20B) and the Guanidine
Group on WR. The above phenomenon was detailed in
Fig. 8(b). The hydrogen bond as well as Van der Waals force
proved to be dominant forces in the binding process by
calculation of binding energy.

The optimized docked structures of WR–DNA predict a
mixed mode of electrostatic and groove binding. This may
be explained that the groove mode is the dominant mode
and hence its manifestations are evident in experimental
work.

Conclusions

In summary, two different modes of binding to DNA by WR
have been found by spectroscopy and molecular modeling
study.
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The minor groove binding between WR and DNA proved
by fluorescence spectroscopy, UV–visible absorption spectra,
tests for the ability of WR binding with dsDNA and ssDNA,
and the ionic effect in the fluorescence experiment, etc. The
main forces to form WR–DNA complex are van der Waals
forces and hydrogen bond. CD results showed deep confor-
mational changes in the ctDNA double helix upon binding
with the drug. This result is also supported by the docking
studies. The molecular modeling results illustrated that WR
tended to bind in the region of rich A–T base pairs through the
hydrogen bond between A 18 and N atom of the amino group
on WR. Furthermore, the calculated parameter shows that
electrostatic binding also exists. Taken together we conclude
that the binding model of WR and ct DNA obtained in this
study is mixed-mode, and groove binding is probably the
predominant one.

This study is very important for elucidating the molecular
interaction mechanism and very useful for screening out or
designing more efficient polypeptide drugs rationally. Fur-
ther studies are in progress.
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